

TABLE OF CONTENTS

(O F-To 7<) ol I 11 o T« [Tt 4 [o TR N 1

Chapter 2. ApPliCation....ciceiiiiiiiiiiiiiiiiiieiiiieeieieneteeeetenenctcnensesnasesensssnnnsesnnsonnnsns 2

Chapter 3. ConfigUration.....cicieiiieiiieiiieiieeiieeiiereintesesosasosnsosnsosnsossssssssssssssssssssnsssnses 3

Chapter 4. Initial version of the kernel........cccciviiiiiiiiiiiniiiiiiiiieiiieiiieiineciecsnessnsonses 4

Chapter 5. Updated version of the Kernel........ccceieiiiiiiiiiiiiiiiiiiieeiieeeneecenneecnnneenns 10

CRaPter 6. RESOUICES. . .iiiitiiiintiiiiniieietetiastesenseosestossnstossnsosssstossnssossnsessnssossnssannnse 12
www.nvidia.com

Uncoalesced Global Accesses Sample v2022.5.0 | ii

Chapter 1.
INTRODUCTION

This sample profiles a memory-bound CUDA kernel which does a simple computation
on an array of double3 data type in global memory using the Nsight Compute profiler.
The profiler is used to analyze and identify the memory accesses which are uncoalesced
and result in inefficient DRAM accesses.

Global memory accesses on a GPU

Global memory resides in device memory and device memory is accessed via 32, 64, or
128-byte memory transactions.

When a warp executes an instruction that accesses global memory, it coalesces the
memory accesses of the threads within the warp into one or more of these memory
transactions depending on the size of the data accessed by each thread and the
distribution of the memory addresses across the threads. If global memory accesses

of the threads within a warp cannot be combined into the same memory transaction
then we refer to these as uncoalesced global memory accesses. In general, the more
transactions are necessary, the more unused bytes are transferred in addition to the bytes
accessed by the threads, reducing the instruction throughput accordingly. For example,
if a 32-byte memory transaction is generated for each thread's 4-byte access, throughput
is divided by 8.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.5.0 | 1

Chapter 2.
APPLICATION

The sample CUDA application adds a floating point constant to an input array of
1,048,576 (1024*1024) double3 elements in global memory and generates an output array
of double3 in global memory of the same size. double3 is a 24-byte built-in vector type
which is a structure containing 3 double precision floating point values:

struct

double x, vy, z;
}i

The uncoalescedGobal Accesses sample is available with Nsight Compute under <nsight-
compute-install-directory>/extras/samples/uncoalescedGlobal Accesses.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.5.0 | 2

Chapter 3.
CONFIGURATION

The profiling results included in this document were collected on the following
configuration:

» Target system: Linux (x86_64) with a NVIDIA RTX A2000 (Ampere GA106) GPU
» Nsight Compute version: 2022.4.0

The Nsight Compute Ul screen shots in the document are taken by opening the profiling
reports on a Windows 10 system.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.5.0 | 3

Chapter 4.
INITIAL VERSION OF THE KERNEL

The initial version of the sample code provides a naive implementation for the kernel
which adds a floating point constant to an input array of double3.

__global void addConstDouble3 (int numElements, double3 *d in, double k,
double3 *d out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;

if (index < numElements)

{

double3 a = d in[index];

a.x += k;
a.y += k;
a.z += k;
d out[index] = a;

}

The instruction a = d_in[index] in the kernel code results in each thread in a warp
accessing global memory 24-bytes apart. In the first step all threads request a load

for d_in[index] .x as shown in the following diagram. In the second step a load for
d_in[index] .y and in the third step a load for d_in[index] . z is made by all threads.

double3 double3

[: | : | Global Memory

0 | 24 | 48 |
t0 t1 t2 Global Memory Loads

| | |

The instruction d_out[index] = a; has a similar multistep storage pattern.

Profile the initial version of the kernel

There are multiple ways to profile kernels with Nsight Compute. For full details see the
Nsight Compute Documentation. One example workflow to follow for this sample:

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.5.0 | 4

https://docs.nvidia.com/nsight-compute/index.html
https://docs.nvidia.com/nsight-compute/index.html

Initial version of the kernel

» Refer to the README distributed with the sample on how to build the application
» Run ncu-ui on the host system

» Use alocal connection if the GPU is on the host system. If the GPU is on a remote
system, set up a remote connection to the target system

» Use the "Profile" activity to profile the sample application
» Choose the "full" section set
» Use defaults for all other options

Summary page

All kernels in the application are profiled and the summary page is displayed. The
kernel launch parameters, cycles, duration, compute and memory throughput for each
kernel are shown. In this sample we have only one kernel launch.

The duration for this initial version of the kernel is 292.99 micro seconds and this is used
as the baseline for further optimizations.

@ NVIDIA Nsight Compute - m] x
File Connection Debug Profile Tools Window Help

=] Connect Baselines Metric Details

#h addConstDouble3.ncu-rep X

Page: Summary ~ Result: 0- 518-addConstDouble3 ¥ ¢ ~ AddBaseline ~ ApplyRules upancy Calculator ~ Copy as Image ~
Result Time Cycles Regs GPU SM Frequency CC Process
Current 518 - addConstDouble.. 292.99 usecond 164,379 16 0-NVIDIA RTX A2000 561 lefusecond 8.6 [2212] unc cedGlobalAct

t3 @ Doub ck a result to see detailed metrics.

]

s Detected 11
Function Name addConstDouble3
Demangled Name addConstDouble3(int, double3 *, double, double3 *)
[2212] uncoalescedGlobalAccesses

NVIDIA RTX A2000

409, 1, 1

256, 1, 1

164,379

3 292.99
Compute Throughput [% 36.80
Mermory Throughpu 72.69
Registers [register/thread] 16

Details page - GPU Speed Of Light Throughput

The details page "GPU Speed Of Light Throughput" section provides a high-level
overview of the throughput for compute and memory resources of the GPU used by the
kernel.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.5.0 | 5

Initial version of the kernel

@ NVIDIA Nsight Compute -] *
File Connection Debug Profile Tools Window Help

=) Connect Baselines Metric Details
stDouble3.ncu-rep X

* Resultt 0- 518-addConstDouble3 ¥ ¥ ~ AddBaseline ~ ApplyRules upancy Calculator ~ Copy as Image ~

Time Cycles Regs GPU SM Frequency CC Process ®0 06
Current 518-.. 292.99 usecond 164,379 16 0- NVIDIA RTX A2000 561.03 cycle ond 8.6 212]uncoalescedGlobalAccesses

(@ The report contains imported source files.
» GPU Speed Of Light Throughput

High-level overview of the throughput for compute and memo sources of the GPU. Fo ch unit, gh e s the achieved percentage of
utilization with respect to the theoretical maximum. Breakd s show the throughput for each i i sub-m npute and Memory to clearly
identify the high ontributor. High-level overview of the utilization for ited as a roofline chart.
Compute (SM) Throughput [%]

Memory Throughput [%]

L1/TEX Cache Throughpur

L2 Cache Throughpu . 3 SM Frequency [

DRAM Throughput [%] .69 DRAM Frequen

section to identify the

- b) m to make sure you're efficiently ur he bytes

High M Throughput) 9) y utiizing Y

£ *gh Memory Throughp h k per memary ernel fusion) or
whether there are values you can (re)compute.

The ratio of peak float (fp ble (fp64) performe n e :1. The kemnel achieved
S p3: > n of its fp64 peak perfo d nines that t
LEELE ANk zator is fp64 bound, consider u: bit pr on floating point operations to improve its performance. See the
for more details on roofline al

The achieved fp64 performa ywer than the fp64 pipeline utilization. Check the

R AR L TR section to see if using fused instructions can benefit this kernel.

GPU Throughput

Compute (SM) [%]

Memory [%]

0.0 40.0 50.0 60.0
Speed Of Light (SOL) [%]

For this kernel it shows a hint for High Memory Throughput and suggests looking at the
memory workload analysis section. Click on Memory Workload Analysis.

Details page - Memory Workload Analysis section

The Memory Workload Analysis shows hints for LITEX Global store and load access
patterns. The description and focus metrics of these performance issues describe how
more sectors than necessary are being accessed from memory. A sector is an aligned
32-byte chunk of memory in a cache line or device memory. These additional sector
accesses are caused by uncoalesced memory accesses and can negatively impact
performance. In this case, for the load or store instructions, each thread is accessing a
double (8 bytes) and there are 32 threads in a warp. Therefore, each memory request
from a warp should ideally access 256 bytes (8 x 32), which is 8 sectors. However, in
this unoptimized version, we see 24 sectors per request. It suggests checking the Source

Counters section for uncoalesced global stores and loads. Click on the Source Counters
link.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.5.0 | 6

Initial version of the kernel

@ NVIDIA Nsight Compute -] *
onnection Debug Profile Tools Window Help

Metric Details

@ addConstDouble3.neu-rep X

Page: Details * Resultt 0- 518-addConstDouble3 ¥ ¥ ~ AddBaseline ~ ApplyRules ancy Copy as Image ~

Result Time Cycles Regs GPU SM Frequency CC Process @006
Current 518 -.. .99 usecond 16 9 16 0-NVIDIA RTX A2000 561. Y 0 6 212]unc

he highest-utilized pipeline
4-bit floating point operatio

se units (Max Bandwidth), or by reaching the maximum
iled tables with data for each memory unit.

Mem Busy [
L1/TEX Hit Rate 2.9 Max Bandwidth [%]
L2 Hit Rate [%] .61 Mem Pipes Busy [¢

L2 Comprs Si s Ra L2 Compr Ratio

A TEX Global Load Access Pattern
nsfers per request, to maxirﬁ\'ze
ection for uncoalesced global loads.

Value Inf
Sectors per L1TEX Request 24 g

T request, or 24.0
pattern for 8.0 b
request, to maxir

A TEX Global Store Access Pattern

Value Info
per L1ITEX Request 24 2,359,

Details page - Source Counters section

The Source Counters section shows a hint for "Uncoalesced Global Accesses". It explains
that the metric “L2 Theoretical Sectors Global Excessive” is the indicator for uncoalesced
accesses. The table for this metric lists the source lines with the highest value. Click on
one of the source lines to view the kernel source at which the bottleneck occurs.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.5.0 | 7

Initial version of the kernel

@ NVIDIA Nsight Compute - m} X
File Connection Debug Profile Tools Window Help

<) Connect Baselines < > i Metric Details

 addConstDouble3.ncu-rep X

Page: Details ~ Result: 0- 518-addConsiDouble3 ~ ¥ - AddBaseline ~ ApplyRules [1 Copy as Image ~
Result Time Cycles Regs GPU SM Frequency CC Process ®© 0 0 e
Current 518 - addConstDouble3 (4096, 1, 1)x(256,1,1) 292.99 u: 164379 16 0-NVIDIARTX A2000 561. e/usecond 8.6 [2212] uncoa GlobalAccesses

v Source Counters All

ons. Warp Stall Sampling metrics are peric sampled over the kernel runtime. They indicate when warps were stalled and couldnit be
Only focus on stalls if the sche: fail

0.10 Avg. Divergent Branches
Iting in a total of 3145728 excessive secto f the total 4718592 sect heck the L2 Theoretical Sectors
locations. The ditional information on re uncoalesced device memory
© derived_memory_I2_theoretical_sectors_global_excessi 06 memory_I2_theoretical_sectors_global > memory_I2_theoretic: . global_ideal

L2 Theoretical Sectors Global Excessive

Location Value (%)

Source page

The CUDA source and SASS(GPU Assembly) for the kernel is shown side by side.
When opening the Source page from Source Counters section, the Navigation metric is
automatically filled in to match, in this case "L2 Theoretical Sectors Global Excessive".
You can see this by the bolding in the column header. The source line at which the
bottleneck occurs is highlighted.

It shows uncoalesced global memory load accesses at line #55:

double3 a = d in[index];

It shows uncoalesced global memory store accesses at line #59:

d out[index] = a;

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.5.0 | 8

Initial version of the kernel

@ NVIDIA Nsight Compute
bug Profile
<) Gonnect

@ addConstDoubled.ncu-rep X

Page: Source ~ Result: 0-
Result Time

Current 518 - addConstDouble3 (4096, 1,1)x(256,1,1) 292.99

View: Source and SASS ~
ors Global Excessive ~

nunElements,

index = blockIdx.x * blockpim.x + thread
(index < numElements)

double3 a = d_in[index]; Global(3)

Global(3)

www.nvidia.com
Uncoalesced Global Accesses Sample

ConstDouble3 ¥ 5

Add Baseline ~

Cycles Regs GPU

Load(3)

Store(3)

Baselin

Apply Rules pancy Caleulator

SM Frequency
0-NVIDIA RTX A2000 561.0

CC Process

/usecond 8.6 [2212] unc

stDoub
Navigation: L2 Theoretic

s L2 Theoretical Sectors *
e Global Excessive

Address
1 0000712 b327bbe
2 0000712 b327bb10
3 0000712 b327bb260
b327bb30
b327bbue
6 9000712 b327bb50
7 8000712 b327bb60
8 9000712 b327bb70
b327bb8e
b327bb98
b327bba
b327bbbe
b327bbce
b327bbde
0000712 b327bbed
©000712 b327bbfe

64(3) 1,572,864

rs Global Excessive

Sourc:
addConstDouble3

ISETP.GE.AND

MoV
uLDC
IMAD. WIDE

.E

.E

.E
IMAD. WIDE
DADD
DADD

mage ~

<

s L2 Theoretical Sectors “
e Global Excessive

v2022.5.0 | 9

Chapter 5.
UPDATED VERSION OF THE KERNEL

Considering the uncoalesced accesses reported by the profiler we analyze the global
load access pattern. Each thread executes 3 reads for the three double values in double3.

We can treat the double3 array as a double array and each thread can process one double
instead of one double3. With this change threads in a warp access consecutive double
values and both loads and stores are coalesced.

double3 double3
[: | : | Global Memory
o o o
o8| e
t0 t1 t2 Global Memory Loads

Lol

__global void addConstDouble (int numElements, double *d in, double k, double
*d_out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;

if (index < numElements)

{

d out[index] = d in[index] + k;

}

1

Profile the updated kernel

The kernel duration has reduced from 293.99 microseconds to 236.64 microseconds. We
can set a baseline to the initial version of the kernel and compare the profiling results.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.5.0 | 10

Updated version of the kernel

@ NVIDIA Nsight Compute - [m} X

Eil nnection Debug Profile Tools Window Help

< Connect Baselines = Metric Details

x #h addConstDouble.ncu-rep X

> Result: 0- 518-addConstDouble ~ WV~ AddB: ne ~ Apply Rules)ccupancy Calculator Copy as Image ~
Report Result Cycles Regs GPU SM Frequency CC Process
Current ad..le 518 - addConstDouble (12288, 1, 1). 4 usecond 130,681 16 0 - NVIDIA RTX A2000 23 cycls

Baseline1 ad..e3 518-addConstDouble3 (4096, 1,1).. 292.99 usecond 164,379 16 0-NVIDIARTXA2000 561.03 cycl

@ The report contains imported source
» GPU Speed Of Light Throughput

i of utilizat pect to th
throughput for ividua i d) y identify th n . Hi e of the util for compute and m
aroofline chart.
Compute hro 6.29 Duration [usecond]
Memory Throughput [
he Throughput

ache Throughput [%]

DRAM Throughput

We can confirm that the global memory accesses are coalesced. In the L1/TEX Cache
metrics table under the Memory workload analysis section we see that the "Sectors/Req
metric value is 8 for both global loads and global stores.

"

@ NVIDIA Nsight Compute — O X
onnection Debug Profile To Window Help

<] Connect Baselines Metric Details
» &) addConstDouble.neu-rep X

Details - 0- 518-addConstDouble ¥ ¢ + ine Apply Rules Occupancy Calculator opy as Image ~
Report Result Time Cycles Regs GPU SM Frequency CC Process @000
Current ad..le 518-addC.. 4 usecond 130,681 16 0- NVIDIA RTX A2000 552.23 cycle/ 8.6 8] uncoalescedGlobal

Baseline1 ad..e3 518-addC.. .99 usecond 164,379 16 0-NVIDIARTX A2000 561.03 cycle, 8.6 [2212] uncoalescedGlobalAc

L1/TEX Cache
Wavefronts Sectors Sectors/Req Hit Rate
Local Load (+0.00%, 0. 0. (+0.0 0 (+0.00%)
Global Load

Global Load To Shared Store (ac

Global Load To Shared Store (byp:

Surface Load

Texture Load

Global Store Z (+0.00%) 0. (-50. 2. 1A 86,43:

)

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.5.0 | 11

Chapter 6.
RESOURCES

» GPU Technology Conference 2021 talk S32089: Requests, Wavefronts, Sectors
Metrics: Understanding and Optimizing Memory-Bound Kernels with Nsight
Compute

» Nsight Compute Documentation

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.5.0 | 12

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32089/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32089/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32089/
https://docs.nvidia.com/nsight-compute/index.html

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2022-2023 NVIDIA Corporation and affiliates. All rights reserved.

This product includes software developed by the Syncro Soft SRL (http://
WWWw.sync.ro/).

www.nvidia.com ﬁVIbiA®

	Table of Contents
	Introduction
	Application
	Configuration
	Initial version of the kernel
	Updated version of the kernel
	Resources

